#### Foundation Models and ICL

Lecture 13 - 36th International Summer School SAA University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

Friday, 12 September 2025

- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- 5 Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

#### What Are Foundation Models?

- Definition: Models trained on broad, diverse data (often self-supervised) that transfer across many downstream tasks with minimal task-specific changes
- Core properties: scale (parameters, tokens), general representations, and versatile adaptation (prompting/ICL, PEFT, RAG)
- Backbone: For NLP, usually Decoder Transformers are used with AR generation (Vaswani et al., 2017)
- Scaling: Capability follows compute/data scaling laws (Kaplan, McCandlish, Henighan, Brown, et al., 2020); compute-optimal training balances model and token budgets (Hoffmann, Borgeaud, Mensch, et al., 2022)

#### Architectural Backbone: Transformers

- Self-attention replaces recurrence/convolution; parallelizable sequence modeling (Vaswani et al., 2017)
- Pretraining variants: masked LM (Devlin, Chang, Lee, & Toutanova, 2019) vs. autoregressive decoders
- Inductive biases: attention as data-dependent mixing; KV-memory view (Geva et al., 2021)
- Positional encodings and other long-context tricks (e.g., RoPE; Su, Lu, Pan, Wen, & Liu, 2021)
- Previously we have mentioned scaling laws (Kaplan et al., 2020)

# Data Needs for Training FMs

- Scale: billions to trillions of tokens with a compute-optimal balance of parameters and tokens; budget tokens, not only params (Hoffmann et al., 2022).
- Diversity: broad domain, style, language, and modality coverage to learn general representations and handle distribution shift.
- Quality: rigorous filtering and deduplication at document and paragraph level; near-duplicate removal; language ID; low-quality and boilerplate removal; test-set decontamination.
- Long-tail coverage: upweight rare languages, domains, and entities; mix high-quality curated slices with broad web-scale data to raise signal-to-noise.

#### FMs as a Model Class

- Model class:  $\mathcal{F} \coloneqq \{f_{\theta}: \mathcal{X} \to \mathcal{Y} \mid \theta \in \Theta\}$  with  $\Theta \subset \mathbb{R}^P$ ,  $P \gg 10^8$
- Probabilistic view:  $f_{\theta}$  parameterizes  $p_{\theta}(y \mid x)$ ; prediction by  $\hat{y} = \mathbb{E}_{p_{\theta}}[Y \mid x]$  or, more commonly, sampling from the last softmax layer with various approaches
- ullet Self-supervised pretraining defines surrogate labels; the same  ${\cal F}$  shared across modalities

## Pretraining and Adaptation

- Pretraining (AR MLE):  $\max_{\theta} \sum_{t} \log p_{\theta}(x_t \mid x_{< t})$  calibrates broad priors
- Adaptation options: fine-tune, PEFT (low-rank), ICL via exemplars, RAG via retrieval
- ICL view:  $\hat{y}=f_{\theta_{\text{pre}}^{\star}}([\mathcal{C},x])$  with  $\mathcal{C}=$  in-prompt demonstrations (Brown et al., 2020)

- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

#### From GPT-1 to GPT-4

- GPT-1/2: Unsupervised pretraining improves transfer; scaling unlocks fluent generation (Radford, Narasimhan, Salimans, & Sutskever, 2018; Radford et al., 2019)
- GPT-3: Emergent few-shot learning via prompting; broad task coverage without gradient updates (Brown et al., 2020)
- InstructGPT: Alignment via RLHF improves following instructions and safety (Ouyang et al., 2022)
- GPT-4: Strong reasoning, broader safety/robustness; multimodal variants (OpenAI, 2023)

#### GPT-3: Few-Shot Learners

- Scale: 175B parameters; diverse pretraining corpus (Brown et al., 2020)
- Modes: zero-shot, one-shot, few-shot; strong performance without finetuning
- Sensitivities: prompt format/order; benefits from better instructions and demonstrations
- Limitations: calibration and factuality; improved downstream via RAG and alignment

## InstructGPT: RLHF Alignment

- Pipeline: supervised fine-tuning (SFT)  $\rightarrow$  reward model  $\rightarrow$  RL (PPO) (Ouyang et al., 2022)
- Effect: better instruction following, reduced toxicity; modest performance trade-offs mitigated by scale
- Practice: preference data quality and coverage critical; monitor reward hacking

#### Few-Shot and Zero-Shot with CoT

- Few-shot prompting (GPT-3): in-prompt exemplars enable rapid task adaptation (Brown et al., 2020)
- Zero-shot Chain-of-Thought: reasoning cue elicits stepwise solutions (Kojima, Sagawa, Lu, et al., 2022)
- Self-consistency: sample multiple chains and vote to improve accuracy (X. Wang, Wei, Schuurmans, et al., 2022)

# Working with FMs - 1

- Prompting and few-shot ICL: task specification at inference
- Parameter-efficient fine-tuning (PEFT): adapters/LoRA conceptually
- Retrieval-augmented pipelines: ground outputs; reduce hallucinations
- Serving: KV-cache optimization, batching, speculative/parallel decoding

# Working with FMs - 2

- Instruction prompts with role/content separation; few-shot exemplars for schema priming
- Reasoning cues: CoT and self-consistency for multi-step tasks
- Guardrails: constrained decoding, refusal policies; retrieval for factual grounding
- Evaluation: hold-out tasks, calibration checks, distribution-shift probes

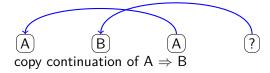
# ICL: Emergence and Setup

- Observation (GPT-3): decoder-only LMs adapt to new tasks from in-prompt exemplars without weight updates (Brown et al., 2020)
- Prompt pattern:  $[(x_1, y_1), \dots, (x_K, y_K), x_{\text{query}}] \mapsto \hat{y}_{\text{query}}$
- Capabilities: few-shot classification, translation, QA; sensitivity to exemplar order and format
- Scaling effect: reliability and breadth improve with model/data scale

#### ICL: Broader Evidence and Limits

- Role of demonstrations (Min, Lewis, Zettlemoyer, & Hajishirzi, 2022): label-space priming, instruction format, and answer options drive gains
- Simple function classes (Garg, Tsipras, Roelofs, Hazan, et al., 2022):
   Transformers can learn linear/affine rules in-context under suitable pretraining
- Takeaway: ICL performance depends on prompt design, distributional match, and model scale

#### Induction Heads: Schematic



Induction heads attend to earlier repeated tokens and copy their continuations (Olsson, Elhage, Nanda, et al., 2022).

- Foundations
- GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transforme
- 5 Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

## Why Tabular is Different

- Heterogeneous features, mixed types, missingness, and no natural order
- Not clear how to train across tables!
- Strong baselines (GBDT) set high bar; sample sizes often modest
- Foundation approach: pretrain cross-table priors and reuse across tasks

# Tabular Landscape: Families and Design

- TabTransformer: categorical tokenization + attention over features (Huang, Khetan, Cvitkovic, & Karnin, 2020)
- FT-Transformer: added continuous features leading to simplified, strong baseline for tabular DL (Gorishniy, Rubachev, Khrulkov, & Babenko, 2021)
- TransTab: cross-table transfer with aligned embeddings (Z. Wang & Sun, 2022)
- Design: feature masking/denoising, schema-agnostic tokens, missingness augmentation

### Tabular foundation models: the landscape

**TabPFN**. Prior-data fitted network for tabular classification and beyond. Trains on synthetic tasks sampled from a *prior over generative processes*; uses alternating column and row attention to perform ICL on full tables in a single forward pass.(Hollmann, Müller, Eggensperger, & Hutter, 2022; Müller, Hollmann, Pineda Arango, Grabocka, & Hutter, 2021)

**TabPFN v2**. Nature 2025: tabular foundation model with wide wins up to  $n \le 10,000$  and strong calibration, large speedups over classical baselines.(Hollmann et al., 2025)

**TabICL**. ICML 2025: scalable ICL to n in the  $10^4$  to  $5 \times 10^5$  range by a 2-stage architecture: column-then-row embedding to fixed-dimension, then a transformer for ICL. Often faster and stronger than TabPFN for large n.(Qu, Holzmüller, Varoquaux, & Le Morvan, 2025)

# TabPFN: amortized Bayesian view

**Prior-data fitted network** learns to approximate the Bayes posterior predictive under task prior  $\Pi$ :

$$p(y^{\star} \mid \mathbf{x}^{\star}, \mathcal{D}) = \int p(y^{\star} \mid \mathbf{x}^{\star}, \boldsymbol{\theta}) \, p(\boldsymbol{\theta} \mid \mathcal{D}) \, d\boldsymbol{\theta}.$$

PFN learns a function  $f_{\psi}(\mathbf{x}^{\star}, \mathcal{D}) \approx p(y^{\star} \mid \mathbf{x}^{\star}, \mathcal{D})$  by minimizing the expected negative log likelihood over synthetic tasks sampled from  $\Pi$ .(Müller et al., 2021)

- ICL emerges: the provided table acts as context; no gradient step at inference.
- Prior Π can encode causal structure, class-imbalance, feature types, noise, or temporal drift.(Helli, Schnurr, Hollmann, Müller, & Hutter, 2024)

# TabPFN: architecture and objective

**Input.** A table  $\mathbf{X} \in \mathbb{R}^{n \times d}$  and targets  $\mathbf{y} \in \mathcal{Y}^n$  (some labels masked for query points).

 Alternating attention over columns and rows to mix feature-wise and record-wise information efficiently.

**Training objective.** For classification with classes  $\{1, \dots, K\}$ :

$$\min_{\psi} \mathbb{E}_{\tau \sim \Pi} \mathbb{E}_{(\mathcal{D}_{\tau}, \mathbf{x}^{\star}, y^{\star})} \Big[ -\log f_{\psi}(y^{\star} = k \mid \mathbf{x}^{\star}, \mathcal{D}_{\tau} \setminus \{(\mathbf{x}^{\star}, y^{\star})\}) \Big].$$

**Practice.** Strong small-*n* performance, little tuning, fast inference; v2 strengthens priors, scaling, and calibration.(Hollmann et al., 2022, 2025)

# TabPFN: handling distribution shift

Temporal and other shifts degrade IID assumptions. *Drift-Resilient TabPFN* encodes temporally evolving structural causal models in the prior and trains PFN to be robust to shifts, improving ID and OOD accuracy and calibration.(Helli et al., 2024)

- ullet Prior  $\Pi$  becomes a stochastic process over parameters to simulate drift.
- Empirically outperforms XGBoost, CatBoost, and vanilla TabPFN under wild-time shifts.

## TabICL: problem and idea

**Challenge.** Alternating full row/column attention becomes expensive when n is large. **Idea.** Pretrain on synthetic datasets with up to 60k samples and build fixed-dimension row embeddings, then run ICL over those embeddings for scalability. (Qu et al., 2025)

- Two-stage transformer: (1) column-then-row to embed rows, (2) ICL transformer over a compact set of row embeddings.
- Can handle up to 500k samples at inference on affordable hardware while maintaining ICL benefits.

## TabICL: two-stage computation - 1

Let  $\mathbf{x} \in \mathbb{R}^F$  be a row with mixed types. Stage 1 produces a fixed-dimensional row embedding

$$r(\mathbf{x}) \in \mathbb{R}^d$$
,  $r(\mathbf{x}) = \underbrace{\mathsf{RowTransformer}\big(\mathsf{ColEmbed}(\mathbf{x})\big)}_{\mathsf{inter-feature interactions within the row}}$ 

#### where:

- **ColEmbed** is a *distribution-aware column-wise embedding*: for each feature j, a Set Transformer operates on that column's values across rows (training rows as K, V to avoid leakage) to produce a per-cell feature embedding for  $\mathbf{x}_j$ .
- RowTransformer is a transformer across the F feature embeddings of the same row (not across rows). It prepends a small number of learnable [CLS] tokens and uses RoPE to prevent representation collapse when feature distributions are similar. The concatenated [CLS] outputs form  $r(\mathbf{x})$ .

### TabICL: two-stage computation - 2

**Stage 2 (dataset-wise ICL).** For a support set  $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$  and a query  $\mathbf{x}^*$ ,

$$\mathcal{S} = \big[ r(\mathbf{x}_1), \, e(y_1), \, \dots, \, r(\mathbf{x}_m), \, e(y_m), \, r(\mathbf{x}^{\star}), \, e([\texttt{MASK}]) \big],$$

and a causal-masked transformer outputs logits at [MASK]:

$$o = W_o h_{\text{\tiny{[MASK]}}} + b, \qquad p_{\psi}(y \mid \mathbf{x}^*; S) = \operatorname{softmax}(o).$$

Training minimizes the cross-entropy at the [MASK] position over synthetic tasks. (Qu et al., 2025)

## TabICL: Concrete Example - 1

**Target**  $x^*$ : Region=New\_Region, Vehicle=suv, DriverAge=24, BonusMalus=1.1

#### Retrieve K=3 neighbors (by CLS embedding cosine)

| ID | Region  | Vehicle   | DriverAge | ClaimCount |
|----|---------|-----------|-----------|------------|
| R1 | RegionA | SUV       | 25        | 1          |
| R2 | RegionB | SUV       | 23        | 0          |
| R3 | RegionA | Crossover | 24        | 1          |

#### ICL prompt tokens (conceptual):

- $[(x^{R1}, y^{R1}=1), (x^{R2}, y^{R2}=0), (x^{R3}, y^{R3}=1), x^*]$
- Causal/self-attention with target masked; outcomes only for context rows

# TabICL: Concrete Example - 2

#### Prediction (frequency):

- Base CT (no context):  $\hat{\mu}_{\mathrm{base}}(x^*) = 0.072$
- TablCL (with context):  $\hat{\mu}_{ICL}(x^* \mid \{R1,R2,R3\}) = 0.094$

**Notes**: Frozen decoder preserves calibration; ICL nudges representation toward similar risks; log retrieved IDs/similarities for audit.

#### TabICL: Tokenization & Decoration - 1

#### **Sequence layout** (conceptual):

CLS (Reg:A)(Veh:SUV)(Age:25)(BM:1.1)(y=1)Reg:B) (Veh:SUV) (Age:23) (BM:1.0) (y=0) (Reg:A)(Veh:Cross)(Age:24)(BM:1.1)(y=1)Reg:New Veh:SUV Age:24 BM:1.1 Context tokens Target tokens

#### TabPFN vs TabICL: when to use which

If  $n \le 10k$ : TabPFN-v2 is a powerful default with excellent calibration and speed (Hollmann et al., 2025)

If n is large (tens of thousands to hundreds of thousands): TablCL often wins on accuracy and wall time (Qu et al., 2025)

If distribution shift is a concern: drift-aware TabPFN can be strong when the shift is encoded in the prior (Helli et al., 2024)

**If latency and memory are tight:** TuneTables yields small learned contexts for PFNs with strong results (Feuer et al., 2024)

- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- 5 Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

# The Challenge in Actuarial Modeling

#### • Limited Data Problem:

- New products or regions
- Rare events
- New vehicle models
- **Traditional Solution**: Credibility Theory (Bühlmann, 1967)
  - Bühlmann framework
  - Linear combination of individual and collective experience

#### Modern Challenge:

- Complex non-linear patterns
- High-dimensional feature spaces
- Need for dynamic adaptation

## Evolution: From Credibility to ICL

- Classical Credibility (Bühlmann, 1967): Linear blend of individual and collective experience
- Credibility Transformer (Richman, Scognamiglio, & Wüthrich, 2025):
  - Embeds credibility in attention mechanism
  - CLS token as learnable prior
- ICL-Enhanced CT (This Work):
  - Dynamic context from similar instances
  - Zero-shot generalization capability
  - No retraining required for ICL!
  - Padayachy, Richman, Scognamiglio, and Wüthrich (2025)

## In-Context Learning: Key Innovation

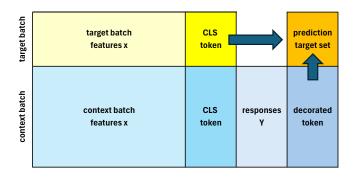
#### ICL in Actuarial Context:

- Context = similar historical policies
- Adaptation = adjusting predictions based on context
- Zero-shot = handling new risk profiles

#### Key questions

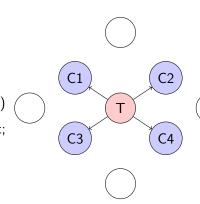
- Can ICL improve performance on a model that has been pre-trained using supervised learning?
- If this is the case, what is the explanation for this improvement?
- Can ICL for tabular data be used to improve the performance of a much smaller pre-trained model focussing only on a single dataset?

### ICL-CT: Architecture Overview



## Component 1: Context Retrieval

- Purpose: Retrieve similar risks for context
- **Space**: Base CT CLS embeddings  $(\ell_2$ -normalized)
- Metric: Cosine similarity (inner product)
- Retrieval: K = 64 neighbors per target; union across chunk
- **Batching**: Keep top c = 1000 context; target chunk size m = 200



Context retrieval in embedding space

## Component 2: Outcome Token Decorator

- Purpose: Inject observed outcomes from the context into their CLS tokens in a credibility-weighted way.
- **Definition** (context *j*):

$$\mathbf{c}^{\mathrm{decor}}(\mathbf{x}_j) = \widehat{\mathbf{c}}^{\mathrm{cred}}(\mathbf{x}_j) + \frac{\mathbf{v}_j}{\mathbf{v}_j + \kappa} \mathbf{z}^{\mathrm{FNN1}}(Y_j).$$

- Notes:
  - Applied to context only; targets keep  $\widehat{\boldsymbol{c}}^{\operatorname{cred}}(\boldsymbol{x}_i)$  (no outcomes).
  - $\mathbf{z}^{\text{FNN1}}(\cdot)$  is a learned embedding of the response; exposures v enter only via  $\frac{v}{v+\kappa}$  to avoid leakage.

## Component 3: Causal Self-Attention

- **Setup**: Concatenate [context | target] and apply causal mask  $M^{\infty}$  to block target-target links.
- **Q/K/V**: Time-distributed FNNs on tokens:
  - Context: from  $c^{\text{decor}}$  (depends on Y).
  - Target: from  $\widehat{\boldsymbol{c}}^{\mathrm{cred}}$  (feature-only).
- Causal attention:

$$\mathbf{A} = \operatorname{softmax} \left( \frac{\mathbf{Q} \mathbf{K}^{\top}}{\sqrt{2b}} + \mathbf{M} \right), \quad \mathbf{H} = \mathbf{A} \mathbf{V}$$
 (1)

• **Effect**: Propagates outcome-enriched context information to target CLS tokens via attention weights  $a_{i,j}$ .

## Component 4: Frozen Decoder and Output

- Decoder: Use frozen decoder from base CT
- Prediction on targets:

$$\widehat{\mu}^{\text{ICL-CT}}(\mathbf{x}_i; \mathcal{B}_{\text{context}}) = \widehat{\mathbf{z}}^{\text{decod}}(\mathbf{c}_i^{\text{ICL-trans}}), \quad i \in \mathcal{I}_{\text{target}}$$
 (2)

• Benefits: Preserves calibration; regularizes ICL adjustments

- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- 5 Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

## Attention as Generalized Credibility

Attention-based Credibility:

$$\hat{\mu} = \sum_{j} \alpha_{j}(\mathbf{x}) \cdot \mathbf{v}_{j} \tag{3}$$

where  $\alpha_j(\mathbf{x})$  are attention weights

- Advantages:
  - Feature-dependent weights
  - Multiple information sources
  - Non-linear combinations



#### Attention



## Proposition: Credibility via Attention

**Statement (paper Prop. 1)**: For target instance i, the causal attention head produces

$$m{h}_i \ = \ a_{i,i} \, m{z}_V^{ ext{FNN}} \Big( \widehat{m{c}}^{ ext{cred}}(m{x}_i) \Big) \ + \ \sum_{j \in \mathcal{I}_{ ext{context}}} a_{i,j} \, m{z}_V^{ ext{FNN}} \Big( \widehat{m{c}}^{ ext{cred}}(m{x}_j) + rac{m{v}_j}{m{v}_j + \kappa} \, m{z}^{ ext{FNN1}}(Y_j) \Big) \, ,$$

with  $a_{i,j} \ge 0$  and  $a_{i,i} + \sum_{j \in \mathcal{I}_{context}} a_{i,j} = 1$ , and  $a_{i,j} = 0$  for j in other targets (by masking).

**Interpretation**: A credibility blend between the target's own signal and context signals enriched by outcomes with weight  $\frac{v}{v+\kappa}$ .

### **Proof Sketch**

- $\bullet$  Causal mask  ${\it M}^{\infty}$  zeros target–target interactions, leaving self and context terms only.
- Softmax over  $QK^{\top}/\sqrt{2b} + M$  yields normalized nonnegative weights  $a_{i,j}$  on  $\{i\} \cup \mathcal{I}_{\text{context}}$ .
- Attention head computes  $\mathbf{h}_i = \sum_j a_{i,j} \mathbf{v}_j$  with values built from decorated tokens for context and plain cred CLS for the target, giving the stated credibility structure.

### Linearized ICL Variant

**Idea**: Make the attention weights independent of outcomes by using feature-only queries/keys.

$$\widetilde{\textbf{\textit{Q}}} = \textbf{\textit{z}}_{\textit{\textit{Q}}}^{\rm FNN} \! \big( \textbf{\textit{c}}^{\rm cred} \big), \quad \widetilde{\textbf{\textit{K}}} = \textbf{\textit{z}}_{\textit{\textit{K}}}^{\rm FNN} \! \big( \textbf{\textit{c}}^{\rm cred} \big), \quad \textbf{\textit{V}} = \textbf{\textit{z}}_{\textit{\textit{V}}}^{\rm FNN} \! \big( \textbf{\textit{c}}^{\rm decor} \big).$$

- **Effect**: Predictions become linear in Y through V, while  $\widetilde{Q}$ ,  $\widetilde{K}$  depend only on features.
- Caveat: Guarantees hold cleanly for a single ICL layer; deeper stacks may reintroduce non-linearities via intermediate transformations.
- **Empirics**: Linearized model slightly underperforms the 2-layer non-linear ICL prior to joint fine-tuning but closes the gap after.

- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- Theoretical Connections
- **1** Learning Procedure
- Zero-Shot Capabilities
- Summary

## Three-Phase Training

- Phase 1: Base CT pretraining
  - AdamW (LR  $10^{-3}$ , WD  $10^{-2}$ ,  $\beta_2$ =0.95), batch 1024
  - Poisson deviance; early stopping (patience 20)
- Phase 2: ICL fine-tuning
  - Insert decorator + 2 ICL layers; freeze decoder
  - AdamW (LR  $3 \cdot 10^{-4}$ , WD  $10^{-2}$ ,  $\beta_2 = 0.95$ )
  - Causal mask; loss on target rows only
- Phase 3: Joint fine-tuning
  - Unfreeze all; AdamW (LR 3 · 10<sup>-5</sup>)
  - Early stopping (patience 10)

## Training Procedure

### **ICL-CT** training

- ullet Form batches as  $[\mathcal{B}_{\mathrm{context}} \parallel \mathcal{B}_{\mathrm{target}}]$ ; causal mask prevents target-target interactions
- Provide outcomes only for context; decorate tokens; apply ICL layers
- Loss applied to target rows (Poisson deviance)
- Inference uses retrieval procedure from Context Retrieval

## Main Results (Conventional Split)

- Base CT (single run): OOS Poisson deviance 23.743; original CT benchmark 23.788 ± 0.040.
- ICL-CT (2 layers, decoder frozen): OOS 23.725.
- ICL-CT (2 layers, fine-tuned): OOS 23.710 (best single-run).
- Ensembled (5 runs): 2-layer OOS 23.679 (pre-FT), 23.676 (post-FT).

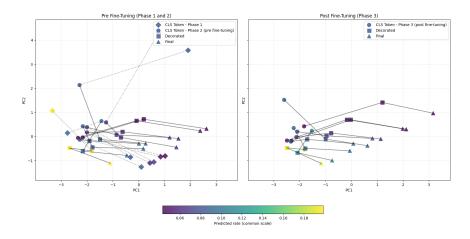
Units:  $10^{-2}$  Poisson deviance.

## Neighborhood Dynamics

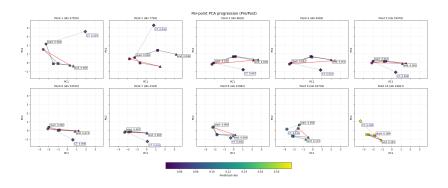
**Distance metric**: Cosine similarity on  $\ell_2$ -normalized CLS embeddings; rank by best match per candidate.

- Tightening: outcome decoration tightens neighborhoods (closest distances drop by 10–40%).
- Selective broadening: final ICL admits near-but-diverse neighbors while preserving key covariates.
- Cohesion: decoration amplifies coherence by fuel/region; pulls exact brand matches into top sets.
- Sparse slices: largest gains where combinations are rare.

# PCA Analysis of CLS Tokens



## PCA Progression by Points



- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- 5 Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

## Zero-Shot Setup

- Goal: Evaluate generalization to unseen region categories
- Test set: Regions totaling 10% exposure remapped to unseen
- Training: Additional small-exposure regions remapped to unseen
- Mechanism: Context retrieved from training distribution only

## Zero-Shot Data Split

| Characteristic         | Training set | Test set |
|------------------------|--------------|----------|
| Number of policies     | 601,781      | 76,226   |
| Number set to unseen   | 165,200      | 76,226   |
| Total exposure (years) | 323,458      | 34,900   |
| Number of claims       | 24,006       | 2,377    |
| Average frequency      | 7.42%        | 6.81%    |

## Zero-Shot Results (Unseen Regions)

- Null model: OOS 21.091 (baseline).
- Base CT (phase 1): OOS 20.282.
- ICL-CT (2 layers, phase 2): OOS 20.264.
- ICL-CT (2 layers, phase 3): OOS 20.259 (best).

Units: 10<sup>-2</sup> Poisson deviance. Results per Table in paper's zero-shot section.

- Foundations
- Q GPT Series Advances
- Tabular Foundation Models
- 4 ICL Credibility Transformer
- Theoretical Connections
- 6 Learning Procedure
- Zero-Shot Capabilities
- Summary

## Key Takeaways

- FMs provide scalable priors; adapt with prompting, PEFT, retrieval
- GPT series unlocked few-shot and zero-shot CoT; reasoning improves with scale and cues
- Tabular FMs: TabTransformer/FT-Transformer/TransTab; TabPFN for small-N
- TabICL: fast Bayesian-flavored adaptation with context
- ICL-CT: integrates credibility with ICL, improves robustness and calibration

### References I

- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... others (2020). Language models are few-shot learners. In *Advances in neural information processing systems*.
- Bühlmann, H. (1967). Experience rating and credibility. *ASTIN Bulletin*, 4(3), 199–207.
- Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of naacl-hlt*. Retrieved from https://arxiv.org/abs/1810.04805
- Feuer, B., Schirrmeister, R. T., Cherepanova, V., Hegde, C., Hutter, F., Goldblum, M., . . . White, C. (2024). *Tunetables: Context optimization for scalable prior-data fitted networks*. Retrieved from https://arxiv.org/abs/2402.11137 (NeurIPS 2024 Poster)

### References II

- Garg, S., Tsipras, D., Roelofs, R., Hazan, E., et al. (2022). What can transformers learn in-context? a case study of simple function classes. arXiv preprint arXiv:2208.01066. Retrieved from https://arxiv.org/abs/2208.01066
- Geva, M., et al. (2021). Transformer feed-forward layers are key-value memories. *arXiv preprint arXiv:2110.02834*. Retrieved from https://arxiv.org/abs/2110.02834
- Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting deep learning models for tabular data. *arXiv preprint* arXiv:2106.11959. Retrieved from https://arxiv.org/abs/2106.11959
- Helli, K., Schnurr, D., Hollmann, N., Müller, S., & Hutter, F. (2024). Drift-resilient tabpfn: In-context learning temporal distribution shifts on tabular data. Retrieved from https://arxiv.org/abs/2411.10634 (NeurlPS 2024)

### References III

- Hoffmann, J., Borgeaud, S., Mensch, A., et al. (2022). Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*. Retrieved from https://arxiv.org/abs/2203.15556
- Hollmann, N., Müller, S., Eggensperger, K., & Hutter, F. (2022). *Tabpfn:* A transformer that solves small tabular classification problems in a second. Retrieved from https://arxiv.org/abs/2207.01848
- Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S. B., ... Hutter, F. (2025). Accurate predictions on small data with a tabular foundation model. *Nature*, *637*(8045), 319–326. doi: 10.1038/s41586-024-08328-6
- Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). Tabtransformer: Tabular data modeling using contextual embeddings. *arXiv* preprint *arXiv*:2012.06678. Retrieved from https://arxiv.org/abs/2012.06678

### References IV

- Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., et al. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361. Retrieved from https://arxiv.org/abs/2001.08361
- Kojima, T., Sagawa, S., Lu, M. D., et al. (2022). Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916.
- Min, S., Lewis, M., Zettlemoyer, L., & Hajishirzi, H. (2022). Rethinking the role of demonstrations: What makes in-context learning work? *arXiv* preprint arXiv:2202.12837. Retrieved from

https://arxiv.org/abs/2202.12837

Müller, S., Hollmann, N., Pineda Arango, S., Grabocka, J., & Hutter, F. (2021). *Transformers can do bayesian inference*. Retrieved from https://arxiv.org/abs/2112.10510

### References V

- Olsson, C., Elhage, N., Nanda, N., et al. (2022). *In-context learning and induction heads*. Technical report. (Available at https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html)
- OpenAl. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., et al. (2022). Training language models to follow instructions with human feedback. In *Advances in neural information processing systems*.
- Padayachy, K., Richman, R., Scognamiglio, S., & Wüthrich, M. V. (2025). In-context learning enhanced credibility transformer. Retrieved from https://arxiv.org/abs/2509.08122
- Qu, J., Holzmüller, D., Varoquaux, G., & Le Morvan, M. (2025). *Tabicl: A tabular foundation model for in-context learning on large data*. Retrieved from https://arxiv.org/abs/2502.05564 (ICML 2025)

#### References VI

- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAl Technical Report.
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners.

  OpenAl Technical Report.
- Richman, R., Scognamiglio, S., & Wüthrich, M. V. (2025). The credibility transformer. *European Actuarial Journal*. (Forthcoming)
- Su, J., Lu, Y., Pan, S., Wen, B., & Liu, Y. (2021). Roformer: Enhanced transformer with rotary position embedding. *arXiv preprint* arXiv:2104.09864. Retrieved from https://arxiv.org/abs/2104.09864
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems*. Retrieved from https://arxiv.org/abs/1706.03762

### References VII

- Wang, X., Wei, J., Schuurmans, D., et al. (2022). Self-consistency improves chain of thought reasoning in language models. *arXiv* preprint arXiv:2203.11171.
- Wang, Z., & Sun, J. (2022). Transtab: Learning transferable tabular transformers across tables. *arXiv preprint arXiv:2205.09328*. Retrieved from https://arxiv.org/abs/2205.09328