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Foundations

What Are Foundation Models?

Definition: Models trained on broad, diverse data (often
self-supervised) that transfer across many downstream tasks with
minimal task-specific changes

Core properties: scale (parameters, tokens), general representations,
and versatile adaptation (prompting/ICL, PEFT, RAG)

Backbone: For NLP, usually Decoder Transformers are used with AR
generation (Vaswani et al., 2017)

Scaling: Capability follows compute/data scaling laws (Kaplan,
McCandlish, Henighan, Brown, et al., 2020); compute-optimal training
balances model and token budgets (Hoffmann, Borgeaud, Mensch, et
al., 2022)
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Foundations

Architectural Backbone: Transformers

Self-attention replaces recurrence/convolution; parallelizable sequence
modeling (Vaswani et al., 2017)

Pretraining variants: masked LM (Devlin, Chang, Lee, & Toutanova,
2019) vs. autoregressive decoders

Inductive biases: attention as data-dependent mixing; KV-memory view
(Geva et al., 2021)

Positional encodings and other long-context tricks (e.g., RoPE; Su, Lu,
Pan, Wen, & Liu, 2021)

Previously we have mentioned scaling laws (Kaplan et al., 2020)
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Foundations

Data Needs for Training FMs

Scale: billions to trillions of tokens with a compute-optimal balance of
parameters and tokens; budget tokens, not only params (Hoffmann et
al., 2022).

Diversity: broad domain, style, language, and modality coverage to
learn general representations and handle distribution shift.

Quality: rigorous filtering and deduplication at document and
paragraph level; near-duplicate removal; language ID; low-quality and
boilerplate removal; test-set decontamination.

Long-tail coverage: upweight rare languages, domains, and entities;
mix high-quality curated slices with broad web-scale data to raise
signal-to-noise.
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Foundations

FMs as a Model Class

Model class: F := {fθ : X → Y | θ ∈ Θ} with Θ ⊂ RP , P ≫ 108

Probabilistic view: fθ parameterizes pθ(y | x); prediction by
ŷ=Epθ

[Y | x ] or, more commonly, sampling from the last softmax layer
with various approaches

Self-supervised pretraining defines surrogate labels; the same F shared
across modalities
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Foundations

Pretraining and Adaptation

Pretraining (AR MLE): maxθ
∑

t log pθ(xt | x<t) calibrates broad priors

Adaptation options: fine-tune, PEFT (low-rank), ICL via exemplars,
RAG via retrieval

ICL view: ŷ=fθ⋆
pre([C, x ]) with C= in-prompt demonstrations (Brown et

al., 2020)
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GPT Series Advances

From GPT-1 to GPT-4

GPT-1/2: Unsupervised pretraining improves transfer; scaling unlocks
fluent generation (Radford, Narasimhan, Salimans, & Sutskever, 2018;
Radford et al., 2019)

GPT-3: Emergent few-shot learning via prompting; broad task
coverage without gradient updates (Brown et al., 2020)

InstructGPT: Alignment via RLHF improves following instructions and
safety (Ouyang et al., 2022)

GPT-4: Strong reasoning, broader safety/robustness; multimodal
variants (OpenAI, 2023)
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GPT Series Advances

GPT-3: Few-Shot Learners

Scale: 175B parameters; diverse pretraining corpus (Brown et al., 2020)

Modes: zero-shot, one-shot, few-shot; strong performance without
finetuning

Sensitivities: prompt format/order; benefits from better instructions
and demonstrations

Limitations: calibration and factuality; improved downstream via RAG
and alignment
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GPT Series Advances

InstructGPT: RLHF Alignment

Pipeline: supervised fine-tuning (SFT) → reward model → RL (PPO)
(Ouyang et al., 2022)

Effect: better instruction following, reduced toxicity; modest
performance trade-offs mitigated by scale

Practice: preference data quality and coverage critical; monitor reward
hacking
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GPT Series Advances

Few-Shot and Zero-Shot with CoT

Few-shot prompting (GPT-3): in-prompt exemplars enable rapid task
adaptation (Brown et al., 2020)

Zero-shot Chain-of-Thought: reasoning cue elicits stepwise solutions
(Kojima, Sagawa, Lu, et al., 2022)

Self-consistency: sample multiple chains and vote to improve accuracy
(X. Wang, Wei, Schuurmans, et al., 2022)
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GPT Series Advances

Working with FMs - 1

Prompting and few-shot ICL: task specification at inference

Parameter-efficient fine-tuning (PEFT): adapters/LoRA conceptually

Retrieval-augmented pipelines: ground outputs; reduce hallucinations

Serving: KV-cache optimization, batching, speculative/parallel
decoding
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GPT Series Advances

Working with FMs - 2

Instruction prompts with role/content separation; few-shot exemplars
for schema priming

Reasoning cues: CoT and self-consistency for multi-step tasks

Guardrails: constrained decoding, refusal policies; retrieval for factual
grounding

Evaluation: hold-out tasks, calibration checks, distribution-shift probes
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GPT Series Advances

ICL: Emergence and Setup

Observation (GPT-3): decoder-only LMs adapt to new tasks from
in-prompt exemplars without weight updates (Brown et al., 2020)

Prompt pattern: [(x1, y1), . . . , (xK , yK ), xquery] 7→ ŷquery

Capabilities: few-shot classification, translation, QA; sensitivity to
exemplar order and format

Scaling effect: reliability and breadth improve with model/data scale
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GPT Series Advances

ICL: Broader Evidence and Limits

Role of demonstrations (Min, Lewis, Zettlemoyer, & Hajishirzi, 2022):
label-space priming, instruction format, and answer options drive gains

Simple function classes (Garg, Tsipras, Roelofs, Hazan, et al., 2022):
Transformers can learn linear/affine rules in-context under suitable
pretraining

Takeaway: ICL performance depends on prompt design, distributional
match, and model scale
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GPT Series Advances

Induction Heads: Schematic

A B A ?
copy continuation of A ⇒ B

Induction heads attend to earlier repeated tokens and copy their continuations
(Olsson, Elhage, Nanda, et al., 2022).
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Tabular Foundation Models

Why Tabular is Different

Heterogeneous features, mixed types, missingness, and no natural order

Not clear how to train across tables!

Strong baselines (GBDT) set high bar; sample sizes often modest

Foundation approach: pretrain cross-table priors and reuse across tasks
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Tabular Foundation Models

Tabular Landscape: Families and Design

TabTransformer: categorical tokenization + attention over features
(Huang, Khetan, Cvitkovic, & Karnin, 2020)

FT-Transformer: added continuous features leading to simplified,
strong baseline for tabular DL (Gorishniy, Rubachev, Khrulkov, &
Babenko, 2021)

TransTab: cross-table transfer with aligned embeddings (Z. Wang &
Sun, 2022)

Design: feature masking/denoising, schema-agnostic tokens,
missingness augmentation

17/50



Tabular Foundation Models

Tabular foundation models: the landscape

TabPFN. Prior-data fitted network for tabular classification and beyond. Trains on
synthetic tasks sampled from a prior over generative processes; uses alternating
column and row attention to perform ICL on full tables in a single forward
pass.(Hollmann, Müller, Eggensperger, & Hutter, 2022; Müller, Hollmann,
Pineda Arango, Grabocka, & Hutter, 2021)

TabPFN v2. Nature 2025: tabular foundation model with wide wins up to
n ≤ 10,000 and strong calibration, large speedups over classical
baselines.(Hollmann et al., 2025)

TabICL. ICML 2025: scalable ICL to n in the 104 to 5 × 105 range by a 2-stage
architecture: column-then-row embedding to fixed-dimension, then a transformer
for ICL. Often faster and stronger than TabPFN for large n.(Qu, Holzmüller,
Varoquaux, & Le Morvan, 2025)
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Tabular Foundation Models

TabPFN: amortized Bayesian view

Prior-data fitted network learns to approximate the Bayes posterior predictive
under task prior Π:

p(y⋆ | x⋆, D) =
∫

p(y⋆ | x⋆, θ) p(θ | D) dθ.

PFN learns a function fψ(x⋆, D) ≈ p(y⋆ | x⋆, D) by minimizing the expected
negative log likelihood over synthetic tasks sampled from Π.(Müller et al., 2021)

ICL emerges: the provided table acts as context; no gradient step at inference.

Prior Π can encode causal structure, class-imbalance, feature types, noise, or
temporal drift.(Helli, Schnurr, Hollmann, Müller, & Hutter, 2024)
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Tabular Foundation Models

TabPFN: architecture and objective

Input. A table X ∈ Rn×d and targets y ∈ Yn (some labels masked for query
points).

Alternating attention over columns and rows to mix feature-wise and
record-wise information efficiently.

Training objective. For classification with classes {1, . . . , K}:

min
ψ

Eτ∼ΠE(Dτ ,x⋆,y⋆)

[
− log fψ(y⋆=k | x⋆, Dτ \ {(x⋆, y⋆)})

]
.

Practice. Strong small-n performance, little tuning, fast inference; v2 strengthens
priors, scaling, and calibration.(Hollmann et al., 2022, 2025)
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Tabular Foundation Models

TabPFN: handling distribution shift

Temporal and other shifts degrade IID assumptions. Drift-Resilient TabPFN
encodes temporally evolving structural causal models in the prior and trains PFN to
be robust to shifts, improving ID and OOD accuracy and calibration.(Helli et al.,
2024)

Prior Π becomes a stochastic process over parameters to simulate drift.

Empirically outperforms XGBoost, CatBoost, and vanilla TabPFN under
wild-time shifts.
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Tabular Foundation Models

TabICL: problem and idea

Challenge. Alternating full row/column attention becomes expensive when n is
large. Idea. Pretrain on synthetic datasets with up to 60k samples and build
fixed-dimension row embeddings, then run ICL over those embeddings for
scalability.(Qu et al., 2025)

Two-stage transformer: (1) column-then-row to embed rows, (2) ICL
transformer over a compact set of row embeddings.

Can handle up to 500k samples at inference on affordable hardware while
maintaining ICL benefits.
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Tabular Foundation Models

TabICL: two-stage computation - 1

Let x ∈ RF be a row with mixed types. Stage 1 produces a fixed-dimensional row
embedding

r(x) ∈ Rd , r(x) = RowTransformer
(

ColEmbed(x)
)︸ ︷︷ ︸

inter-feature interactions within the row

,

where:

ColEmbed is a distribution-aware column-wise embedding: for each feature j ,
a Set Transformer operates on that column’s values across rows (training rows
as K , V to avoid leakage) to produce a per-cell feature embedding for xj .

RowTransformer is a transformer across the F feature embeddings of the
same row (not across rows). It prepends a small number of learnable [CLS]
tokens and uses RoPE to prevent representation collapse when feature
distributions are similar. The concatenated [CLS] outputs form r(x).
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Tabular Foundation Models

TabICL: two-stage computation - 2

Stage 2 (dataset-wise ICL). For a support set S = {(xi , yi)}m
i=1 and a query x⋆,

S =
[

r(x1), e(y1), . . . , r(xm), e(ym), r(x⋆), e([MASK])
]
,

and a causal-masked transformer outputs logits at [MASK]:

o = Wo h[MASK] + b, pψ(y | x⋆; S) = softmax(o).

Training minimizes the cross-entropy at the [MASK] position over synthetic tasks.
(Qu et al., 2025)
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Tabular Foundation Models

TabICL: Concrete Example - 1

Target x∗: Region=New_Region, Vehicle=SUV, DriverAge=24, BonusMalus=1.1

Retrieve K=3 neighbors (by CLS embedding cosine)

ID Region Vehicle DriverAge ClaimCount

R1 RegionA SUV 25 1
R2 RegionB SUV 23 0
R3 RegionA Crossover 24 1

ICL prompt tokens (conceptual):

[(xR1, yR1=1), (xR2, yR2=0), (xR3, yR3=1), x∗]

Causal/self-attention with target masked; outcomes only for context rows
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Tabular Foundation Models

TabICL: Concrete Example - 2

Prediction (frequency):

Base CT (no context): µ̂base(x∗) = 0.072

TabICL (with context): µ̂ICL(x∗ | {R1,R2,R3}) = 0.094

Notes: Frozen decoder preserves calibration; ICL nudges representation toward
similar risks; log retrieved IDs/similarities for audit.
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Tabular Foundation Models

TabICL: Tokenization & Decoration - 1

Sequence layout (conceptual):

CLS

Reg:A Veh:SUV Age:25 BM:1.1 y=1

Reg:B Veh:SUV Age:23 BM:1.0 y=0

Reg:A Veh:Cross Age:24 BM:1.1 y=1

Reg:New Veh:SUV Age:24 BM:1.1

Context tokens Target tokens
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Tabular Foundation Models

TabPFN vs TabICL: when to use which

If n ≤ 10k: TabPFN-v2 is a powerful default with excellent calibration and speed
(Hollmann et al., 2025)

If n is large (tens of thousands to hundreds of thousands): TabICL often wins
on accuracy and wall time (Qu et al., 2025)

If distribution shift is a concern: drift-aware TabPFN can be strong when the
shift is encoded in the prior (Helli et al., 2024)

If latency and memory are tight: TuneTables yields small learned contexts for
PFNs with strong results (Feuer et al., 2024)
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ICL Credibility Transformer

The Challenge in Actuarial Modeling

Limited Data Problem:
New products or regions
Rare events
New vehicle models

Traditional Solution: Credibility
Theory (Bühlmann, 1967)

Bühlmann framework
Linear combination of individual and
collective experience

Modern Challenge:
Complex non-linear patterns
High-dimensional feature spaces
Need for dynamic adaptation
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ICL Credibility Transformer

Evolution: From Credibility to ICL

Classical Credibility (Bühlmann, 1967): Linear blend of individual
and collective experience

Credibility Transformer (Richman, Scognamiglio, & Wüthrich,
2025):

Embeds credibility in attention mechanism

CLS token as learnable prior

ICL-Enhanced CT (This Work):
Dynamic context from similar instances

Zero-shot generalization capability

No retraining required for ICL!

Padayachy, Richman, Scognamiglio, and Wüthrich (2025)
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ICL Credibility Transformer

In-Context Learning: Key Innovation

ICL in Actuarial Context:
Context = similar historical policies

Adaptation = adjusting predictions based on context

Zero-shot = handling new risk profiles

Key questions

Can ICL improve performance on a model that has been pre-trained
using supervised learning?

If this is the case, what is the explanation for this improvement?

Can ICL for tabular data be used to improve the performance of a
much smaller pre-trained model focussing only on a single dataset?
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ICL Credibility Transformer

ICL-CT: Architecture Overview

target batch CLS prediction
features x token target set

context batch CLS responses decorated
features x token Y token

co
nt

ex
t b

at
ch

ta
rg

et
 b

at
ch

Target and context processed jointly with causal masking (no
target–target attention)

Outcome token decorator on context:
cdecor(x j) = ĉcred(x j) + vj

vj +κ zFNN1(Yj)

Frozen decoder from base CT re-used to decode transformed target
CLS tokens
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ICL Credibility Transformer

Component 1: Context Retrieval

Purpose: Retrieve similar risks for
context

Space: Base CT CLS embeddings
(ℓ2-normalized)

Metric: Cosine similarity (inner product)

Retrieval: K = 64 neighbors per target;
union across chunk

Batching: Keep top c = 1000 context;
target chunk size m = 200

T

C1 C2

C3 C4

Context retrieval in embedding
space
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ICL Credibility Transformer

Component 2: Outcome Token Decorator

Purpose: Inject observed outcomes from the context into their CLS
tokens in a credibility-weighted way.

Definition (context j):

cdecor(x j) = ĉcred(x j) + vj
vj + κ

zFNN1(Yj).

Notes:
Applied to context only; targets keep ĉcred(x i) (no outcomes).

zFNN1(·) is a learned embedding of the response; exposures v enter only
via v

v+κ to avoid leakage.
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ICL Credibility Transformer

Component 3: Causal Self-Attention

Setup: Concatenate [context | target] and apply causal mask M∞ to
block target–target links.

Q/K/V: Time-distributed FNNs on tokens:
Context: from cdecor (depends on Y ).

Target: from ĉcred (feature-only).

Causal attention:

A = softmax
(

QK⊤
√

2b
+ M

)
, H = A V (1)

Effect: Propagates outcome-enriched context information to target
CLS tokens via attention weights ai ,j .
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ICL Credibility Transformer

Component 4: Frozen Decoder and Output

Decoder: Use frozen decoder from base CT

Prediction on targets:

µ̂ICL-CT(x i ; Bcontext) = ẑdecod
(
cICL-trans

i

)
, i ∈ Itarget (2)

Benefits: Preserves calibration; regularizes ICL adjustments
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Theoretical Connections

Attention as Generalized Credibility

Attention-based Credibility:

µ̂ =
∑

j
αj(x) · v j (3)

where αj(x) are attention weights
Advantages:

Feature-dependent weights
Multiple information sources
Non-linear combinations

Classical
Ind Col

α

Attention

αj
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Theoretical Connections

Proposition: Credibility via Attention

Statement (paper Prop. 1): For target instance i , the causal attention head
produces

hi = ai,i zFNN
V

(
ĉcred(x i)

)
+

∑
j∈Icontext

ai,j zFNN
V

(
ĉcred(x j) + vj

vj +κ zFNN1(Yj)
)

,

with ai,j ≥ 0 and ai,i +
∑

j∈Icontext
ai,j = 1, and ai,j=0 for j in other targets (by

masking).

Interpretation: A credibility blend between the target’s own signal and context
signals enriched by outcomes with weight v

v+κ .
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Theoretical Connections

Proof Sketch

Causal mask M∞ zeros target–target interactions, leaving self and context
terms only.

Softmax over QK⊤/
√

2b + M yields normalized nonnegative weights ai,j on
{i} ∪ Icontext.

Attention head computes hi =
∑

j ai,j v j with values built from decorated
tokens for context and plain cred CLS for the target, giving the stated
credibility structure.
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Theoretical Connections

Linearized ICL Variant

Idea: Make the attention weights independent of outcomes by using feature-only
queries/keys.

Q̃ = zFNN
Q
(
ccred), K̃ = zFNN

K
(
ccred), V = zFNN

V
(
cdecor).

Effect: Predictions become linear in Y through V , while Q̃, K̃ depend only
on features.

Caveat: Guarantees hold cleanly for a single ICL layer; deeper stacks may
reintroduce non-linearities via intermediate transformations.

Empirics: Linearized model slightly underperforms the 2-layer non-linear ICL
prior to joint fine-tuning but closes the gap after.
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Learning Procedure

Three-Phase Training

1 Phase 1: Base CT pretraining
AdamW (LR 10−3, WD 10−2, β2=0.95), batch 1024

Poisson deviance; early stopping (patience 20)

2 Phase 2: ICL fine-tuning
Insert decorator + 2 ICL layers; freeze decoder

AdamW (LR 3 · 10−4, WD 10−2, β2=0.95)

Causal mask; loss on target rows only

3 Phase 3: Joint fine-tuning
Unfreeze all; AdamW (LR 3 · 10−5)

Early stopping (patience 10)

41/50



Learning Procedure

Training Procedure

ICL-CT training

Form batches as [Bcontext ∥ Btarget]; causal mask prevents target–target
interactions

Provide outcomes only for context; decorate tokens; apply ICL layers

Loss applied to target rows (Poisson deviance)

Inference uses retrieval procedure from Context Retrieval
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Learning Procedure

Main Results (Conventional Split)

Base CT (single run): OOS Poisson deviance 23.743; original CT
benchmark 23.788 ± 0.040.

ICL-CT (2 layers, decoder frozen): OOS 23.725.

ICL-CT (2 layers, fine-tuned): OOS 23.710 (best single-run).

Ensembled (5 runs): 2-layer OOS 23.679 (pre-FT), 23.676 (post-FT).

Units: 10−2 Poisson deviance.
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Learning Procedure

Neighborhood Dynamics

Distance metric: Cosine similarity on ℓ2-normalized CLS embeddings; rank by
best match per candidate.

Tightening: outcome decoration tightens neighborhoods (closest distances
drop by 10–40%).

Selective broadening: final ICL admits near-but-diverse neighbors while
preserving key covariates.

Cohesion: decoration amplifies coherence by fuel/region; pulls exact brand
matches into top sets.

Sparse slices: largest gains where combinations are rare.

44/50



Learning Procedure

PCA Analysis of CLS Tokens
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Learning Procedure

PCA Progression by Points
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Zero-Shot Capabilities

Zero-Shot Setup

Goal: Evaluate generalization to unseen
region categories

Test set: Regions totaling 10%
exposure remapped to unseen

Training: Additional small-exposure
regions remapped to unseen

Mechanism: Context retrieved from
training distribution only
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Zero-Shot Capabilities

Zero-Shot Data Split

Characteristic Training set Test set

Number of policies 601,781 76,226
Number set to unseen 165,200 76,226
Total exposure (years) 323,458 34,900
Number of claims 24,006 2,377
Average frequency 7.42% 6.81%
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Zero-Shot Capabilities

Zero-Shot Results (Unseen Regions)

Null model: OOS 21.091 (baseline).

Base CT (phase 1): OOS 20.282.

ICL-CT (2 layers, phase 2): OOS 20.264.

ICL-CT (2 layers, phase 3): OOS 20.259 (best).

Units: 10−2 Poisson deviance. Results per Table in paper’s zero-shot section.
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Summary

Key Takeaways

FMs provide scalable priors; adapt with prompting, PEFT, retrieval

GPT series unlocked few-shot and zero-shot CoT; reasoning improves
with scale and cues

Tabular FMs: TabTransformer/FT-Transformer/TransTab; TabPFN for
small-N

TabICL: fast Bayesian-flavored adaptation with context

ICL-CT: integrates credibility with ICL, improves robustness and
calibration
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